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Abstract: Raman spectroscopy as a high-resolution characterization technique was used to analyze 
various pure metal sulfides immersed in water, namely pyrite (FeS2), chalcopyrite (CuFeS2), sphalerite 
(ZnS), marmatite (Zn1-XFeXS) and galena (PbS). The Raman characterization was undertaken in situ with 
the minerals immersed in water. Characteristic Raman spectrum that shows the vibrational modes of 
the atomic bonds in the mineral crystal structure is reported. This spectroscopic technique revealed that 
marmatite particles are composed of micro-size, perhaps nano-size, zones with different Fe and Zn 
content. With the intensity of the Fe-S and Zn-S Raman signals, the iron content of the zones was 
quantified. The copper ion up-take by marmatite particles was studied through this technique. It was 
found that the up-take of copper ions on the marmatite zones depended on their Fe content. Copper ion 
up-take occurred more preferentially on the zones of low Fe content than on those of high Fe content. 
The adsorption of the collector propyl xanthate on pyrite and chalcopyrite was also assessed by Raman 
spectroscopy. The Raman spectrum revealed that dixanthogen formed on the surface of these sulfides. 
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1. Introduction 

Mineral characterization of sulfides is essential in many engineering fields related to minerals. In sulfide 
ore processing, it is an important tool that provides information to improve the efficiency of the 
concentration process and to upgrade the sulfide concentrates. In flotation research, it is of interest to 
characterize chemical species on sulfides to further understand the flotation process and delineate 
chemical schemes for the optimization of the process. 

There are several techniques to characterize sulfide minerals in ores, such as optical microscopy 
(Pirard, 2004), scanning electron microscopy (Cornwell and Morse, 1987) and XRD analysis (Kumar and 
Rajkumar, 2014). To identify surface species on floating sulfides many techniques are available, namely 
FTIR spectroscopy, XPS, voltammetry (Salama et al., 2015), atomic force microscopy, calorimetry 
(Robledo-Cabrera et al., 2015; Robledo-Cabrera et al., 2018), zeta potential (Laskowski et al., 1997; 
Fuerstenau et al., 2007), time-of-flight mass spectrometry, ToF-SIMS, (Siew et al. 2008) and sum 
frequency spectroscopy (Jin et al. 2014).  The surface chemical property of sulfides can also be studied 
using density functional theory, DFT (Chen et al., 2010). Raman spectroscopy has been recently applied 
to study a few sulfide minerals (Robledo-Cabrera et al., 2015; Chandra and Gerson, 2009). 

Raman spectroscopy is a high-resolution technique that quickly provides information on the 
chemical and structure of organic and inorganic materials, allowing their identification. This technique 
has many advantages over those that are commonly used to characterize ores and surface species on 
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floating sulfide minerals. In Raman spectroscopy only a small amount of sample is needed, and the 
sample can be either a solid, liquid or a solid immersed in an aqueous solution. The sample does not 
require special preparation and can be in contact with water, which does not interfere in the 
characterization of the sample. It is possible to rapidly characterize inorganic and organic species and 
if an optical microscope is coupled to the instrument, it is possible to select specific domains on the 
mineral allowing a detail spatial characterization of the solid surface. White (2006) showed Raman 
spectroscopy has the advantage to provide a useful fingerprint for mineral identification, for example, 
sulphates can be easily distinguished from carbonates. In addition, unstable samples can be stored and 
analyzed on glass containers, without affecting their characterization. In addition, he showed that 
Raman spectroscopy is able to do in situ molecular identification of minerals in the ocean depths. White 
(2009) conducted studies to determine the characteristic spectral bands and the relative intensity of the 
Raman scattering of relevant minerals in hydrothermal sites of the seabed. Furthermore, he determined 
how the quality of the mineral spectra was affected by changes in excitation and sampling wavelength. 
The studied minerals were elemental sulfur, carbonates, sulfates and sulfides. High quality Raman 
spectra were obtained using the green excitation laser (532 nm) and no significant fluorescence was 
observed from the analyzed minerals.  Bouchard and Smith (2003), presented a catalog of 45 mineral-
related Raman spectra in the history of art or archeologies. Most of the minerals came from the 
Mineralogy Gallery at the Muse'um National d'HistoireNaturelle, France and were verified by X-ray 
diffraction to support the spectroscopic identification. 

Glass and water are weak Raman dispersers so spectra of minerals can be obtained from samples 
through glass and immersed in water. Hope et al. (2001) suggested the application of Raman 
spectroscopy to characterize minerals of importance in ore processing. Soumya and Hendry (2011) 
applied the technique to characterize different synthetic and natural phases of iron, found in the acid 
drainage of mines and slags,: oxides (hematite, α-Fe2O3; magnetite, Fe3O4), hydroxides (ferrihydrite, 
5Fe2O3.9H2O; goethite, α-FeO(OH); lepidocrocite, γ-FeO(OH); akaganeite, β-FeO(OH,Cl)), carbonate 
(siderite, FeCO3), sulfate (natrojarosite, NaFe3(SO4)2(OH)6) and ferric arsenates (scorodite, 
FeAsO4.2H2O;yukonite, Ca3Fe(AsO4)(OH)3.5H2O). They indicated that Raman spectroscopy can replace 
XRD for the characterization of minerals.  Shapter et al. (2000) was able to characterize oxidation 
products on galena (PbS) such as oxysulfates (PbO, PbSO4, 3PbO.PbSO4 and 4PbO.PbSO4), which 
formed by high-temperature oxidation of the galena induced by the high power density of the laser (25 
mW at 514.5 nm). 

Raman spectroscopy has not been limited for the characterization of minerals. Andreev and Barzev 
(2003) applied it to investigate surface species on chalcopyrite after treating the mineral with the 
collector isopropyl xanthate. At a high collector concentration, they reported chemisorbed cuprous 
xanthate and physisorbed isopropyl dixanthogen on chalcopyrite. At collector concentrations similar to 
those used in an industrial flotation process, cuprous xanthate was the only product found on the 
mineral. 

The aim of this work was to further demonstrate that Raman spectroscopy is a straightforward and 
reliable technique to characterize sulfide minerals and the surface species on floating sulfides in a water 
environment. Pristine crystals of chalcopyrite, pyrite, galena, sphalerite and marmatite were used in 
this study. A very detail spectroscopy study was undertaken on the marmatite immersed in water with 
copper ions, which are used to activate the marmatite surface. Through copper activation, marmatite 
flotation improves with sulfhydric collectors. This work also involved the use of the technique to 
characterize the chemical species on pyrite and chalcopyrite after contacting them with propyl xanthate 
(PPX). Xanthates are common collector reagents to recover these minerals by flotation.   

Marmatite (Zn1-xFexS), is a cubic polymorph mineral with a variable iron content. Fe2+ ions exchange 
Zn2+ ions in the mineral crystal structure. It is common in polymetallic ores. Its importance as a zinc 
source and its frequent occurrence in a wide variety of rock formation conditions has led to study the 
mineral through many experimental techniques. However, many details of the Zn-Fe isomorphism still 
remain unclear. One reason is the non-uniform distribution of Fe and Zn, even in individual grains of 
both pristine and synthetic marmatite (Osadchii and Gorbaty, 2010). They studied synthesized 
marmatites (Zn1-XFeXS) with different Zn/Fe molar ratios, in the range of 0<x<0.5, through Raman 
spectroscopy. They reported differences in Raman band intensities throughout the concentration range, 
suggesting that these could be due to a change in the percolation state of the mineral crystal lattice. They 
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proposed that the intensity of the Raman band could be used to determine the chemical composition of 
marmatite. 

2. Experimental methods 

A ThermoScientific DXR Raman Spectrometer, with an optical microscope and a laser with a 
wavelength of 532 nm, was used in this work. The power amplitude to the laser was 10mW. Pristine 
crystals of chalcopyrite (CuFeS2), pyrite (FeS2), galena (PbS) from Zacatecas, Mexico were used. The 
non-iron sphalerite (ZnS), 99% pure synthetic sample, was obtained from Alfa AESAR. The marmatite 
(Zn1-XFeXS) sample was purchased from WARD'S Natural Science. For the Raman spectroscopic studies, 
the minerals were prepared to a size of approximately 5 mm by hand grinding using an agate pestle 
and mortar. One g mineral was conditioned in 100 mL deionized water at pH 8 for 10 min. In the case 
of sphalerite, the mineral was treated at pH 10.5. For pyrite and chalcopyrite treated with PPX, the 
sulfides were conditioned in an aqueous solution of 10-3 mol/L PPX for 10 min. With a glass pipette, a 
very small volume of the mineral suspension was withdrawn and a few drops were placed on a glass 
slide, which was positioned under the Raman microscope to carry out the Raman analysis. The optical 
microscope, coupled to the spectrometer, allowed us to visualize and select the mineral areas to be 
analyzed. Each sulfide was characterized at three different areas. The Raman spectrum of CuFeS2, FeS2 
and ZnS were identical in the examined areas, but in the Raman spectrum of PbS, a SO4 signal appeared, 
whose intensity depended on the exposure time to the Raman laser. To study the galena, the smallest 
power amplitude to the laser of the spectrometer was used to minimize the oxidation of the mineral 
surface. This was found to be less than 5 mW. pH 8 was selected because the flotation process of  PbS, 
CuFeS2 and FeS2 in polymetallic ores is undertaken about this pH value. For ZnS, the pH of 10.5 was 
chosen because this is the pH at which most flotation processes of ZnS are carried out.     

When copper-activated marmatite was spectroscopically analyzed, the mineral was first conditioned 
at pH 10.5 in the absence of copper ions. The Raman analysis was performed on the marmatite under 
this condition. Afterwards, the particles were contacted with a few drops of a copper aqueous solution 
(10-3 mol/L Cu2+, pH 10.5). This pH was selected because marmatite activation and flotation are carried 
out about this pH value.         

All aqueous solutions were prepared with de-ionized water, which was obtained by passing distilled 
water through a Barnstead water purification system. The resistivity of the de-ionized water was 18 
MΩ-cm. The pH of the aqueous solutions was adjusted using dilute NaOH solutions.  Copper aqueous 
solutions were prepared with analytical-grade hydrated copper sulfate (CuSO4.5H2O), from Alfa. 
Highly pure potassium propyl xanthate (PPX) was prepared from commercial PPX from Alkemin, 
México. Ethylic ether and acetone from J. T. Baker were used to purify the commercial xanthate. The 
commercial PPX was dissolved in acetone until saturation, followed by filtration of the PPX-acetone. 
Ethylic ether was added to the filtered acetone to precipitate the xanthate. This procedure was repeated 
three times. A xanthate with a purity of >99% was obtained. 

3. Results and discussion 

The Raman spectrum of the pure sulfides is presented showing the characteristic bands of their metal-
sulfur bonds. Then, the Raman spectrum of marmatite is presented. This mineral was studied in detail 
because Raman bands of distinct intensities were obtained for various analyzed zones of the marmatite 
particle. This was found to be due to their distinct Fe and Zn content. Therefore, the behavior of zones 
with low and high Fe/Zn ratio for copper uptake was further spectroscopically analyzed. With the band 
intensity of the Fe-S bond, the Fe content of the zones was determined so as their copper uptake. Lastly, 
the Raman spectrum of FeS2 and CuFeS2 treated with PPX is presented showing not only the 
characteristic bands of the bonds in the sulfides but also the characteristic bands of the bonds in the 
alkyl CH3-CH2-CH2- non-polar, the –OCS2 polar group of the PPX and the bond S-S in the dixanthogen 
CH3-CH2-CH2-OCS2-S2CO-CH2-CH2-CH3 that formed on the sulfides through oxidation of the collector. 

3.1. Chalcopyrite, CuFeS2 

In CuFeS2 the oxidation state of Cu, Fe and S2 is +1, +3 and -2, respectively. Fig. 1 shows the chalcopyrite 
Raman spectrum. As noted, 5 bands were identified, corresponding to the two metal-sulfur bonds in 



486 Physicochem. Probl. Miner. Process., 56(3), 2020, 483-492 
 

 

the mineral crystal structure, Cu(I)-S (266cm-1 and 475cm-1) and Fe(III)-S (291cm-1, 320cm-1 and 352cm-

1). These bands are very close to those reported by White (2009), namely 265cm-1 and 471cm-1 for the 
Cu(I)-S bond and 291cm-1, 320cm-1 and 352cm-1 for the Fe(III)-S bond. 

 
Fig. 1. Raman spectrum of chalcopyrite immersed in water 

3.2. Pyrite, FeS2 

In Pyrite the oxidation state of Fe and S2 is 2+ and 2-, respectively. Fig. 2 shows the pyrite Raman 
spectrum. Three bands were identified at 343cm-1, 379cm-1 and 429cm-1, which correspond to the Eg, Ag 
and Tg vibrational modes in the di-anion S-S bond of FeS2 (Vogt et al., 1983). White (2009) reported 
similar signals. 

 
 

Fig. 2. Raman spectrum of pyrite immersed in water 

3.3. Galena, PbS 

The Raman spectrum of galena (Fig. 3) showed two bands corresponding to the Pb-S bonds in the 
mineral crystal structure, namely 90cm-1 and 138cm-1. In addition, two bands were detected at 430cm-1 
and 949cm-1, which are due to SO4. This indicated that the galena surface was oxidized where the 
oxidation can be accounted for by the laser beam and the dissolved oxygen in the aqueous solution. 
Galena rapidly oxidizes by oxygen and the oxidation rate increased with temperature (Shapter et al., 
2000). The Raman bands reported here for SO4 are very close to those reported by Shapter et al. (2000) 
at 438.5cm-1 and 972cm-1 and Giudici et al. (2007) at 436cm-1 and 974cm-1. 
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Fig. 3. Raman spectrum of galena immersed in water 

3.4. Sphalerite, ZnS 

Fig. 4 shows the Raman spectrum of sphalerite. Five bands were identified corresponding to the Zn-S 
bonds in the mineral crystal structure, namely 176cm-1, 215cm-1, 273cm-1, 345cm-1 and 670cm-1). These 
bands agree very well with those reported by Osadchii and Gorbaty (2010), and White (2009). 

 
Fig. 4. Raman spectrum of sphalerite immersed in water 

3.5. Marmatite, Zn1-XFeXS 

The Raman spectrum of marmatite is presented in Fig. 5 where six bands due to the Zn-S and Fe-S bonds 
in the mineral crystal structure were distinguished. The bands 176cm-1, 215cm-1, 350cm-1 and 665cm-1 
correspond to Zn-S bond while the bands 298cm-1 and 328cm-1 are due to the Fe-S bond.  Osadchii and 
Gorbaty (2010) reported the bands 298cm-1 and 328cm-1 for Fe-S and a 345cm-1 band for Zn-S. 

Marmatites varied in their Zn and Fe content depending on the substitution degree of Zn by Fe in 
the marmatite crystal structure. This degree of Zn substitution can be up to 50%. The iron and zinc 
content in the marmatite affects the intensity of the Zn-S and Fe-S Raman bands as has been shown 
elsewhere (White, 2009, Osadchii and Gorbaty, 2010).  In this study, many marmatite particles and 
distinct areas of the marmatite particles were spectroscopically analyzed. Different Raman intensities 
of both the Zn-S 350 cm-1 band and the Fe-S 298 cm-1 band were obtained from each of the particle and 
from each of the distinct analyzed areas of a particle. Fig. 5 presents representative spectra from areas 
with a low, intermediate and high Fe/Zn ratio. This Fe/Zn ratio is the Raman intensity of the Fe-S 298 
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cm-1 band divided by Raman intensity of the Zn-S 350 cm-1 band. This Raman intensity ratio is shown 
as Fe/Zn in the figure. The Fe/Zn notation is used henceforth to represent such Raman Intensity ratio.    

 
Fig. 5. Raman spectrum of 3 different areas of a marmatite particle immersed in water 

Osadchii and Gorbaty (2010) reported the Raman spectra of various synthetic marmatites with 
known composition of Fe and Zn. From their data, the Fe/Zn intensity ratio of the Raman spectrum of 
each marmatite type was plotted vs the corresponding Fe content in weight percent (Fig. 6). As noted a 
linear relationship is obtained: 

%Fe = 3.21(Fe/Zn)                                                             (1) 
where %Fe is the Fe-weight percent in the marmatite and Fe/S is the Raman intensity ratio as indicated 
above. With Eq. (1) and the Fe/Zn intensity ratio of the Raman spectrum presented in Fig. 5, the Fe 
content was calculated for the distinct analyzed areas of the marmatite particle that are shown in the 
figure. The Fe content was found to be 1.97, 9.33 and 21.68% for the 0.62, 2.91 and 6.76 Fe/Zn intensity 
ratio, respectively.  Accordingly, a marmatite particle with a 5 mm size is an assembly of micro-size or 
even nano-size particles of marmatite differing in Fe and Zn content. 

 
Fig. 6. Relationship between weight %Fe and intensity ratio of Raman bands of Fe-S Zn-S bonds. Data from 

Osadchii and Gorbaty (2010) 
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To corroborate that marmatite particles are constituted by micro-size entities of distinct Fe and Zn 
content, various marmatite particles were analyzed. Fig. 7 shows the Raman spectra of distinct areas of 
two marmite particles. The Fe/Zn intensity ratio was determined for each of the Raman spectrum. 
Through Eq. (1) the iron content of each analyzed area was calculated. It was found that the Fe content 
varied from 3.03% to 28.89%.  

Marmatite is a difficult mineral to recover by flotation so the mineral needs to be activated with 
copper ions to enhance its flotation recovery (Tong et al., 2006, 2008; Long, 2020). Through this 
activation, copper sulfide species formed on the mineral surface (Hope et al., 2001). The flotation 
recovery of marmatite increased with the copper up-taking of the mineral surface. In this work, the 
Raman spectroscopy technique was used to assess the copper activation of the areas of marmatite 
particle with different Fe content. Accordingly, zones of low and high iron content were first identified 
on a marmatite particle. Then, copper ions were added to the marmite particles and the mineral was 
allowed to interact with the copper ions for 10 min. After this the zones with different Fe contents were 
analyzed again. Fig. 8 shows the Raman spectrum of areas with 3.8 and 24.4% Fe content. It is noted 
that only the zone with the lowest Fe content showed a Raman band at 470 cm-1, due to Cu-S bond. This 
signal did not appear in the spectrum of the zone with high iron content. Therefore, it can be said that 
Cu ions adsorb more preferentially on marmatite with a low iron content than on that with a high iron 
content. Our results are in agreement with those reported by Solecki et al. (1979) and Boulton et al. 
(2005). 

 
Fig. 7.  Raman spectrum and iron content in different areas of marmatite particles 

 
Fig. 8. (a) Photomicrograph of marmatite particle showing zones of low and high iron content analyzed by 

Raman spectroscopy, (b) Raman spectrum of marmatite in zone with low iron content (3.8%) activated by Cu2+ 
ions and c) Raman spectrum of marmatite in zone with high iron content (24.4%) non-activated by Cu2+ ions 
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3.6. Adsorption of collectors on FeS2 and CuFeS2 

Xanthates are common in flotation of base-metal sulfides. They chemically and physically adsorbed 
on the sulfide minerals. Characterization of the chemical compounds that formed from the xanthates-
sulfide interaction is relevant for the mineral recovery by flotation. In this work Raman spectroscopy 
was used to identify the chemical species on pyrite and chalcopyrite once the minerals were contacted 
with PPX. First, the Raman spectrum of solid potassium propyl xanthate was obtained. Then, the 
sulfides in the presence of the collector were characterized. Fig. 9 shows the Raman spectrum of the PPX 
where bands due to the C-H bonds of the CH3 and CH2 of xanthate alkyl chain were clearly identified, 
as well as the bands corresponding to the C-S2 and C-O-C bonds of the xanthate polar group. These 
bands agreed very well with those reported by Andreev and Barzev (2003) and by Hope et al. (2001).  

Fig. 10 shows the Raman spectra of FeS2 and CuFeS2 in the absence and presence of the xanthate. For 
comparison purposes, the Raman spectra of the collector is also presented. In the Raman spectra of FeS2 
and CuFeS2 with xanthate, the band at 500 cm-1 is due to the S-S bond indicating the presence of 
dixanthogen (R-OCSS-SSCO-R; R is the collector alkyl chain) on the minerals. Dixanthogen resulted 
from the oxidation of the xanthate on the mineral surface and is physically attached on the mineral 
(Andreev and Barsev, 2003). 

 
Fig. 9. Raman spectrum of potassium propyl xanthate (PPX) 

 
Fig 10. Raman spectra of: (a) Chalcopyrite and Chalcopyrite-potassium propyl xanthate and (b) Pyrite and pyrite-

potassium propyl xanthate 
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4.  Conclusions 
Raman spectroscopy is a reliable and straightforward technique to characterize sulfide minerals 
immersed in water and to determine chemical compounds on floating sulfides. The metal-S bonds in 
the crystal structure of the sulfides are clearly distinguished in the Raman spectrum of the mineral. This 
spectroscopic technique is able to reveal the compounds on the floating minerals after their interaction 
with sulfhydric collectors and activators. It also showed that marmatite particles of millimetric size are 
composed by micro-size, perhaps nano-size, marmatite entities with different Fe and Zn contents. In 
addition, it revealed that the marmatite entities with the lowest Fe content absorbed more copper ions 
than those with high Fe content.      
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